歡迎訪問伟德betvlctor网页版伟德betvlctor网页版   

著名邏輯學家和哲學家普利斯特授課日程

發布者:系統管理員發布時間:2011-12-28浏覽次數:1405

國際著名邏輯學家和哲學家普利斯特(Graham Priest)将于2011年12月28日至2012年1月20日訪問伟德betvlctor网页版哲學系和現代邏輯與邏輯應用研究所,并将為邏輯專業研究生開設“邏輯與哲學”課程。 
普利斯特現任澳大利亞墨爾本大學教授,澳大利亞人文科學院院士,多所世界著名大學客座教授,曾任澳大利亞哲學學會和邏輯學會會長,國際邏輯、科學哲學和科學方法論聯合會的副主席,是當今最為活躍的邏輯學家和哲學家之一。
以下為普利斯特教授授課計劃及日程,歡迎感興趣的師生參與。授課地點:費彜民樓(新聞傳播學院樓)二樓立言廳(203室)
有關教材可聯系頓新國老師或邏輯專業研究生。
 
Logic and Philosophy
Nanjing University Winter 2011/12
 
The aim of this course is to get you to understand some of the basic ideas of non-classical logic, their relevance to various issue in philosophy, and to engage with some of these issues in the light of the logical techniques. We will be using (parts of) my book Introduction to Non-Classical Logic: from If to Is (Cambridge University Press, 2008). You should possess a copy of this, and bring it with you to class. You should prepare yourself for the course by working through chapters 1 and 12.
There will be 10 3-hour sessions, 2pm-5pm every day, place to be announced. The sessions will be part lecture, part discussion, and part problems class. I will set exercises every session, and you are expected to have attempted these before the next session. The exact topics covered are flexible to a certain extent, and can be determined in part of participant-interests. However, the provisional programme is as follows. The section references are to Introduction to Non-Classical Logic.
 
Introduction
Session 1, December 29. Review of classical logic, the material conditional and the existential quantifier. (1.1-1.10, 12.1-12.7)
 
Conditionals
Session 2, December 30. Modal logic and the strict conditional. (2.1-2.8, 3.1-3.6, 4.5-4.9)
Session 3, January 3. Conditional logic. (5.1-5.5, and maybe 5.6-5.8)
Session 4, January 4. Intuitionist logic and its conditional. (6.1-6.6)
Session 5, January 5. Many-valued logics and their conditionals. (7.1-7.10)
Session 6, January 7. Relevant logic. (8.1-8.6, 10.1-10.4)
Session 7, January 9. Fuzzy logic, and modus ponens. (11.1-11.6)
 
Existence
Session 8, January 9. Free logic. (13.1-13.5)
Session 9, January 11. Quantified modal logic. (14.1-14.5, 15.1-15.4)
Session 10 January 12. Existence in intuitionistic logic and many-valued logics. (20.1-20.6, 21.1-21.7)
Baidu
sogou